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Uncertainty in theoretical chemical kinetics 

 We first consider the high-pressure limit of H + fulvene, where the total rate coefficient is given 

by the sum of the four rate coefficients for H addition to fulvene. Each of these rate coefficients was 

obtained via CVT with the methods discussed in Sec. 2 of the main text, where [1] 

 k(T ) =! kBT
h

Q!

QR

exp("V ! / kBT ) ,        (S1) 

κ is the tunneling correction, Q‡ the variationally optimized pseudo-partition function for the transition 

state, QR is the reactants’ partition function, and V‡ is the variationally optimized zero-point inclusive 

transition state barrier height. Symmetry numbers and reaction path degeneracies are included in the 

partition functions, and it is worth noting in the present context that incorrectly assigning symmetry 

numbers can of course lead to significant errors [2]! Some temperature dependence is not indicated in 

Eq. (S1), as the variational values of Q‡ and V‡ will generally depend on temperature; this dependence 

was included in the calculations but is neglected in the present discussion of uncertainties. From the 

point of view of practical applications, it is of interest to consider the effect of uncertainties in κ, Q‡, and 

V‡ on the overall uncertainty in the predicted rate coefficient k as well as the temperature dependence of 

these uncertainties. The main goal of this discussion is to understand under what conditions the present 

theoretical predictions (and theoretical kinetics predictions in general) can be expected to achieve kinetic 

accuracy (defined here as having an uncertainty of less than factor of ~2). 

Equation (S1) is differentiated to give 
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where we have considered κ, Q‡/QR, and V‡ as independent sources of uncertainty, and ! x
2  is the 

variance in x. In what follows, we discuss expected mean unsigned uncertainties of κ, Q‡, and V‡, as is 

typically done when discussing computational results. We then blithely associate the variance with the 

square of the mean unsigned error.  
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From Eq. (S2), we immediately note the unavoidable limitation on the accuracy of k at low 

temperatures that is associated with uncertainties in V‡. At room temperature, kBT = 0.6 kcal/mol, and so, 

even neglecting other sources of uncertainty, a value of !
V ! < 0.3–0.6 kcal/mol is required for kinetic 

accuracy at 300 K. For systems with more than a few heavy atoms, the high-level theoretical 

calculations used in practical applications (e.g., QCISD(T)/CBS, CCSD(T)/CBS, etc.) may be expected 

to have uncertainties of at least !
V ! "1  kcal/mol, principally due to finite basis set and correlation 

effects. As noted in the main text, the two dual level methods considered for the C6H7 PES differed in 

their predictions of the H addition barrier heights by ~1 kcal/mol, confirming this conventional 

uncertainty assignment for this system. Additional uncertainties in V‡ not tested for here include those in 

the harmonic zero point energy corrections and those arising from small terms in the Hamiltonian that 

are typically neglected [3,4], both of which may be as large as several tenths of a kcal/mol. The expected 

uncertainty in V‡ is therefore ~2–3 times the uncertainty required to achieve kinetic accuracy at 300 K. 

The good news for combustion applications is that kinetic accuracy may be achieved above ~500 K for 

!
V ! "1  kcal/mol. We assign !

V ! = 1 kcal/mol in the present analysis. This assignment is likely nearly 

universal for the quantum chemistry methods used here, although one may assign smaller (or larger) 

uncertainties if more is known about a particular method’s accuracy for a particular class of systems. 

The contribution to Eq. (S2) from tunneling is the relative uncertainty in κ. In general, one can 

identify two sources of uncertainty in any dynamical computation: (1) those present in the computational 

model, and (2) those arising from the quantum chemical inputs. The well-developed and validated 

methods of Truhlar notwithstanding, it is nonetheless difficult to quantify the uncertainty associated with 

the present tunneling models for the large systems studied here. For smaller systems, detailed 

comparisons with quantum dynamics suggested an inherent “semiclassical” error of only ~20% for the 

best tunneling methods [5]. As noted in Sec. 2 of the main text, the Eckart and SCT models differed in 

their predictions by 20% at 300 K and negligibly so at higher temperatures. The uncertainty arising from 
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the quantum chemical inputs can be tested numerically, as was done previously for several dual level 

quantum chemistry methods for the H + HO2 abstraction reaction [6]. Differences of as much as a factor 

of 4 in κ for the SCT model using different quantum chemical inputs were found at room temperature; 

the differences were much smaller at higher temperatures where tunneling itself was small. This analysis 

again suggests that achieving kinetic accuracy at room temperature may be difficult in practical 

calculations. (This difficulty may be mitigated somewhat by cancellation of the effects of !
V !  and κσ  

due to correlations in these uncertainties, as noted previously [6].) Again, the situation improves for 

combustion applications, where the relative uncertainty in κ at elevated temperatures due to the different 

quantum chemical inputs is small as tunneling is unimportant. In the present analysis we are interested 

in combustion applications, and so we do not pursue numerical tests of the uncertainty in the tunneling 

correction for fulvene + H. We instead assume that the dominant source of uncertainty in κ is the choice 

of the tunneling model, and we assign κσ  to be the difference in the SCT and Eckart predictions, which 

is ~20% at room temperature and is negligible above 1000 K. For room temperature or atmospheric 

chemistry applications, more care would be needed quantifying the uncertainty in the tunneling 

corrections. 

Finally, we consider the contribution from Q‡/QR, which is determined by the vibrational and 

rotational properties of the transition state and the reactants. Again, we distinguish sources of 

uncertainty as arising from the choice of the model (which in this case is the rigid rotor/harmonic 

oscillator or RRHO model) and those arising from the quantum chemical inputs (the calculated 

rotational constants and frequencies along the minimum energy path). The RRHO model can suffer from 

significant uncertainties [7], arising principally from anharmonic vibrations such as torsions and coupled 

low-frequency motions. One-dimensional anharmonic corrections (e.g., for torsions) are often used by 

us and others to improve the RRHO predictions, although no such corrections were made here. (No 

obvious torsional corrections were required for the present reactions, as the rings involved prevent large 
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amplitude torsions. It is, however, reasonable to suspect significant anharmonicity associated with, e.g., 

H atom bends in aromatic species, as these bends may be better represented by “squarer” wells than the 

harmonic ones assumed here. Such corrections were not pursued.) The uncertainty in the partition 

function model is strongly temperature dependent, as both Q‡ and QR are defined to be one at 0 K, and 

the RRHO model is exact in this limit. Furthermore, because the vibrational part of Q‡/QR is the ratio of 

the product of single-mode partition functions for the transition state and the reactants, one may 

anticipate significant cancellation in the anharmonicities associated with spectator degrees of freedom. 

At high temperatures, we estimate that, for the present systems, the uncertainty associated with the 

neglect of anharmonicity in the RRHO model can be as large at 30%, arising principally from the 

neglect of anharmonic coupling of the low-frequency interfragment modes at the transition state. (One 

may expect much larger uncertainties from vibrational anharmonicity for reactions where torsions 

participate in the reaction [8].) The uncertainty associated with the treatment of the overall rotation and 

with neglect of the coupling of the rotation to the vibrations in the RRHO model is expected to be small. 

The uncertainty arising from the computational inputs may be ascertained via numerical tests by 

comparing predictions of Q‡/QR using different theoretical methods. This was done in a systematic way 

for several reactions [6]. Here we simply compare the results of the M06-2X/6-311++G(d,p) method and 

the CASPT2/aug-cc-pVDZ method with a minimal active space. Frequencies for the reactants and for all 

but one of the conserved modes were found to be very similar for the two methods. We therefore restrict 

our error analysis to the three lowest-frequency modes at the saddle points for H addition to fulvene. The 

CASPT2 method predicts smaller harmonic frequencies than the M06-2X method for these three modes 

by ~25%, which leads to differences in Q‡/QR of 30, 40, and 45% at 300, 1000, and 2500 K, 

respectively. Considering both the model and chemical input sources of uncertainty, we assign !
Q! /QR

 = 

0, 40, 55, 60% at 0, 300, 1000, and 2500 K, respectively. This assignment is likely typical of reactions 

with loose transition states, low barriers, and no torsions participating in the reaction. Generalizing the 
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assignment of !
Q! /QR

 to other systems is not straightforward. We do note that one may expect 

significantly more uncertainty in !
Q! /QR

 if torsions or other large-amplitude highly-anharmonic motions 

participate in the reaction. 

The three contributions to the uncertainty discussed above and the resulting total uncertainty 

evaluated using Eq. (S1) is shown in Fig. S4 for a single H-addition rate coefficient. If we consider the 

uncertainties in the four additions to be independent from one another, the relative error in the high-

pressure limit rate coefficient decreases by roughly a factor of two. However, it is more likely that the 

uncertainties are correlated for these similar reactions calculated using the same level of theory, in which 

case the relative uncertainties in Fig. S4 also represent that of the total high-pressure limit.  

Next, we consider the collisionless limit, where, as discussed in the main text, H + benzene is the 

exclusive product and is formed from three of the adducts only after passing through three additional 

partially rate limiting saddle points. The uncertainty in the collisionless limit is therefore similar to that 

of the high-pressure limit, and should be increased somewhat to account for contributions from 

uncertainties in the kinetics of the later transition states. We do not do so here, and instead assume that 

this additional uncertainty is small and that the uncertainty is similar for the low- and high-pressure 

limits. The uncertainty in Fig. S4 is therefore the assigned uncertainty for the total rate coefficient at all 

pressures. 

The uncertainties in Fig. S4 are likely typical of many TST calculations for reactions with a 

saddle point. If vibrational uncertainties (arising primarily from vibrational anharmonicity) can be 

mitigated, kinetic accuracy is achievable above ~500 K or so. Predictions at room temperature and 

colder, on the other hand, require accuracies in threshold energies and tunneling corrections that may not 

yet be reliably achieved for systems with more than a few heavy atoms. One may be able to assign 

smaller uncertainties in V‡ for well-behaved systems and/or for systems with only a few heavy atoms, 
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where higher-level quantum chemistry calculations are possible; chemical accuracy at room temperature 

may be within reach for such systems. 

Although not directly relevant to the present analysis, it is interesting to consider the uncertainty 

associated with simpler applications of TST that are often used for the sake of convenience. First, we 

consider errors associated with the Wigner tunneling correction [9]. For the H addition reactions 

considered here, Wigner tunneling can be quite accurate, with differences from the SCT and Eckart 

tunneling corrections of only ~20%, on average. In fact, the Wigner and Eckart tunneling corrections are 

very similar for three of the four H-addition reactions, agreeing with each other to better than a few 

percent; these tunneling corrections themselves are quite small, and are only ~1.2 at 300 K. For the H-

addition reaction with the largest tunneling correction (the one forming the tert-hydrofulvenyl radical), 

however, Wigner tunneling severely underestimates tunneling at room temperature by almost 40% 

(κWigner = 1.8; κSCT = 3.0). This result is in line with past work showing that Wigner tunneling can be 

accurate but only when tunneling is small. For reactions with significant tunneling corrections (and 

tunneling corrections may be several orders of magnitude at 300 K), one may expect the uncertainty 

associated with the Wigner model to be very large. We conclude that Wigner tunneling corrections 

cannot be reliably used in predictive calculations where tunneling is expected to be important, as the use 

of Wigner tunneling corrections introduces uncertainties nearly as large as the tunneling correction 

itself. Second, we consider the uncertainty associated with the neglect of variational effects, which are 

not always included in TST calculations. As discussed in the main text, variational effects were found to 

be significant for the H-addition reactions considered here (which have low barriers), reducing the 

addition rate coefficients by as much as a factor of 2. Furthermore, there is a significant uncertainty 

associated with the use of Cartesian coordinates to describe the harmonic frequencies away from the 

saddle points. The use of curvilinear coordinates is available as a standard option in POLYRATE but 

requires additional user input, which likely discourages their widespread use. We find, however, that the 

use of Cartesian coordinates introduces an uncertainty of 20% at 300 K, increasing to 60% at 2500 K. 
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Comparing these values with those in Fig. S4, the uncertainty arising from what some might consider an 

obscure detail of the calculation can be the dominant source of uncertainty in the calculation at elevated 

temperature. This effect is likely to be significant only for low-barrier processes, such as the ones 

considered here. For such cases, we recommend the use of curvilinear coordinates whenever variational 

effects are significant. 

The extent to which correlations in the various sources of uncertainty mitigate the overall 

uncertainty is difficult to anticipate. Surely there is some cancellation of errors associated with the 

tunneling correction and the predicted barrier height. It also is reasonable to anticipate correlations that 

increase the overall error, such as those associated with different quantum chemical methods predicting 

equilibrium structures with systematically different bond distances. Incorporating these correlations as 

covariances into Eq. (S1) may have a significant impact on the estimation of the overall uncertainty in 

theoretical calculations and is beyond the scope of this present analysis. 

Note that the master equation generally involves the same quantum chemical inputs and models 

as Eq. (S1) as well as a collisional energy transfer term. To better understand the uncertainty associated 

with collisional energy transfer, we consider the simplified case of a unimolecular reaction with one set 

of products. For such a system, the second-order low-pressure dissociation rate coefficient can be 

written10 

 k0 = d !E dE R(E, J; !E , !J )
EJ

"

#
J
$ x( !E , !J )

0

E !J

#
!J
$ ,   (S3) 

where EJ is the rotationally adiabatic threshold energy for the total angular momentum J, E is the total 

energy, R is the collisional energy transfer term describing the rate of transitions from state (E',J') to 

state (E,J) due to bath gas collisions, and x(E,J) is the normalized steady state solution of the master 

equation. The low pressure-limit rate coefficient of a unimolecular reaction is therefore determined by 

the rate of activating collisions near threshold, and this information is contained in R; R is most often 

approximated using the so-called single exponential down model where10 
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 R(E, J; !E , !J ) = Z Aexp("( !E "E) /!)" for E < !E ,     (S4) 

Z is the collision rate (usually assumed to be a Lennard-Jones collision rate), A normalizes the collision 

probability, α is a parameter, ϕ is a model for J-dependence that facilitates the solution of the master 

equation, and the activating wing of R is determined by enforcing detailed balance. This model requires 

α, which is a function of the bath gas and is often written as a function of temperature with two 

parameters (α300 and n), 

 

! 

"(T) ="300(T /300 K)
n
.         (S5) 

 One could identify independent sources of uncertainty in Eq. (S3) (e.g., !" , ! Z , etc…), assign 

values to these uncertainties based on a critical analysis of both the quantum chemical inputs and 

models, and differentiate Eq. (S3) to obtain an expression for the total error, as was done above for Eq. 

(S1). Unfortunately, too little is known about the predictive accuracy of the energy transfer models 

assumed above to reliably assign uncertainties. In ongoing work, we are performing the kinds of studies 

required to quantify these uncertainties, but the results we have obtained so far cannot be reliably 

generalized. We emphasize that in almost every other pressure dependent kinetics calculation involving 

the solution of a master equation that has appeared in the literature, Eqs. (S3) and (S4) (or very similar 

equations) were assumed and the values of α300 and n were either estimated or adjusted to fit the 

resulting calculated rate coefficient to some experimental values. We and others have previously 

discussed the shortcomings of the energy transfer models in Eq. (S3) (see Ref. 11 and references 

therein). As has been widely noted, these models neglect the dependence of energy transfer on the initial 

rotational state and the initial energy of the target and neglects so-called “supercollisions” that give rise 

to a “long tail” distribution instead of a single exponential one. The effects of these approximations on 

the predicted kinetics is largely unquantified. We therefore cannot reliably assign uncertainties based on 

these studies.  
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Here we have considered two simple cases where analytic expressions for the rate coefficients 

may be written, as in Eqs. (S1) and (S3), and analyzed. For more complicated cases, the overall effects 

of the various sources of uncertainty on the resulting multichannel, multiwell kinetics may be studied 

using numerical sensitivity analyses. Although not yet routine, methods for performing and interpreting 

these analyses are actively being developed by several groups. As a very simple example, one can 

estimate the sensitivity of the predicted branching fractions on our choice of α. We adjusted α by a 

factor of 1.5 and found that the resulting branching fractions shown in Fig. 3 of the main text changed 

by less than 0.08. Such a numerical sensitivity analysis provides one measure of the uncertainty of the 

theoretical prediction, but we emphasize that it ignores the uncertainty arising from the choice of the 

theoretical model for energy transfer. This latter uncertainty may be much larger than the former. More 

effort is required to understand the reliability of pressure-dependent theoretical kinetics. 

In conclusion, one may identify the principal sources of uncertainty in a simple theoretical 

kinetics calculation for a reaction with a barrier as arising from: the calculated barrier height, the 

tunneling model, the tunneling quantum chemical inputs, the partition function model, and the partition 

function quantum chemical inputs. At room temperature and colder, chemical accuracy is difficult to 

achieve in any calculation with a saddle point as this accuracy requires calculated barrier heights with 

uncertainties of only few tenths of a kcal/mol (which is not currently feasible for systems with more than 

a few heavy atoms) as well as very accurate tunneling corrections. At combustion temperatures, 

however, the uncertainty is determined almost entirely by the uncertainty in the partition functions, 

suggesting that model development toward more predictive chemical kinetics for combustion should 

focus on this source of uncertainty. There is significant uncertainty in the models typically used for 

collisional energy transfer, and more work is required to quantify this uncertainty. 
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Figure S4 

 

Fig. S4.  The relative uncertainty in the theoretical values of k and the contributions to it arising from 

uncertainties in the barrier heights, tunneling corrections, and partition functions. 

 


